Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression.

نویسندگان

  • Yue-Jun Yang
  • Ze-Cheng Zuo
  • Xiao-Ying Zhao
  • Xu Li
  • John Klejnot
  • Yan Li
  • Ping Chen
  • Song-Ping Liang
  • Xu-Hong Yu
  • Xuan-Ming Liu
  • Chen-Tao Lin
چکیده

Cryptochromes are blue-light receptors that mediate blue-light inhibition of hypocotyl elongation and blue-light stimulation of floral initiation in Arabidopsis. In addition to their blue-light-dependent functions, cryptochromes are also involved in blue-light-independent regulation of the circadian clock, cotyledon unfolding, and hypocotyl inhibition. However, the molecular mechanism associated with the blue-light-independent function of cryptochromes remains unclear. We reported here a comparative proteomics study of the light regulation of protein expression. We showed that, as expected, the protein expression of many metabolic enzymes changed in response to both blue light and red light. Surprisingly, some light-regulated protein expression changes are impaired in the cry1cry2 mutant in both blue light and red light. This result suggests that, in addition to mediating blue-light-dependent regulation of protein expression, cryptochromes are also involved in the blue-light-independent regulation of gene expression. Consistent with this hypothesis, the cry1cry2 mutant exhibited reduced changes of mRNA expression in response to not only blue light, but also red light, although the cryptochrome effects on the red-light-dependent gene expression changes are generally less pronounced. These results support a hypothesis that, in addition to their blue-light-specific functions, cryptochromes also play roles in the control of gene expression mediated by the red/far-red-light receptor phytochromes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blue Light-Dependent Interaction of CRY2 with SPA1 Regulates COP1 activity and Floral Initiation in Arabidopsis

Cryptochromes are blue light receptors that mediate light regulation of gene expression in all major evolution lineages, but the molecular mechanism underlying cryptochrome signal transduction remains not fully understood. It has been reported that cryptochromes suppress activity of the multifunctional E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) to regulate gene expression in res...

متن کامل

Effects of synergistic signaling by phytochrome A and cryptochrome1 on circadian clock-regulated catalase expression.

Persistent oscillation in constant conditions is a defining characteristic of circadian rhythms. However, in plants transferred into extended dark conditions, circadian rhythms in mRNA abundance commonly damp in amplitude over two or three cycles to a steady state level of relatively constant, low mRNA abundance. In Arabidopsis, catalase CAT3 mRNA oscillations damp rapidly in extended dark cond...

متن کامل

Direct interaction of Arabidopsis cryptochromes with COP1 in light control development.

Arabidopsis seedling photomorphogenesis involves two antagonistically acting components, COP1 and HY5. COP1 specifically targets HY5 for degradation via the 26S proteasome in the dark through their direct physical interaction. Little is known regarding how light signals perceived by photoreceptors are transduced to regulate COP1. Arabidopsis has two related cryptochromes (cry1 and cry2) mediati...

متن کامل

Expression of enzymes involved in chlorophyll catabolism in Arabidopsis is light controlled.

We found that the levels of mRNA of two enzymes involved in chlorophyll catabolism in Arabidopsis (Arabidopsis thaliana), products of two chlorophyllase genes, AtCLH1 and AtCLH2, dramatically increase (by almost 100- and 10-fold, respectively) upon illumination with white light. The measurements of photosystem II quantum efficiency in 3-(3,4-dichlorophenyl)-1,1-dimethylurea-inhibited leaves sho...

متن کامل

Runx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells

Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular plant

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 2008